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Abstract—Anhedonia is a core symptom of clinical depres-

sion. Two brain neuropeptides that have been implicated

in anhedonia symptomology in preclinical depression mod-

els are dynorphin and orexin; which are concentrated along

lateral hypothalamic dopamine reward pathways. These

affect regulating neuropeptides modulate each other’s func-

tion, implicating an interactive dysfunction between them in

anhedonia symptomology. But whether their influences are

modified or imbalanced within the hypothalamus or dopa-

mine system in anhedonic preclinical depression models

is not yet clear. We used radioimmunoassay to determine

this in the rat social defeat model of depression; at a time

that anhedonic sexual disinterest was expressed. In tissue

samples of the medial prefrontal cortex (mPFC), ventral teg-

mental area (VTA) and nucleus accumbens, basal dynorphin

levels were similar to normal animals. But orexin was

reduced in the VTA and mPFC. Also, dynorphin and orexin

were both diminished in the hypothalamus which is note-

worthy since nearly all hypothalamic orexin cells co-express

dynorphin. These findings suggest that orexin and dynor-

phin function may be imbalanced between the hypothala-

mus and mesocortical dopaminergic brain regions in

depression. � 2012 IBRO. Published by Elsevier Ltd. All

rights reserved.
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INTRODUCTION

A reduced ability to experience pleasure, termed anhedo-

nia, is a hallmark symptom of depression and is expressed

in rodentmodels of the illness. Various studies suggest that

a dynorphin and orexin interactive dysfunction between the

hypothalamus and the dopamine reward system might

exist in depression; and perhaps cause anhedonia symp-

toms.Dynorphin and orexinmodulate each other’s function

(Eriksson et al., 2004; Li and van den Pol, 2006) as well as

brain reward mechanisms; though dynorphin typically

inhibits and orexin stimulates neural activity (Shippenberg,

2009; Aston-Jones et al., 2010). Dynorphin is also

co-expressed in nearly all orexin neurons, which are exclu-

sively located in dorsomedial and lateral regions of the

hypothalamus (Chou et al., 2001). Importantly, hedonic

behaviors that are commonly diminished in depressed

patients, such as the desire to eat and to engage in sexual

activity, are controlled by an interaction between the hypo-

thalamus and dopamine system (e.g. seeWill et al., 2003b;

Hull and Dominguez, 2007). Thus it is noteworthy that the

hypothalamus sends dynorphin and orexin neural projec-

tions to the three major regions of this system: the ventral

tegmental area (VTA), nucleus accumbens, and medial

prefrontal cortex (mPFC) (e.g. Fallon et al., 1985; Peyron

et al., 1998; Fadel and Deutch, 2002; Baldo et al., 2003).

Each of these regions expresses dynorphin and orexin

receptors (Marcus et al., 2001; Knoll and Carlezon, 2010)

and is implicated in depression susceptibility (see Coving-

ton et al., 2010a). Importantly, activation of dynorphin and

orexin mechanisms within each also modulates hedonic

behavior (Bals-Kubik et al., 1993; Davis et al., 2009;

Aston-Jones et al., 2010).

Studies suggest that orexins’ hedonic effect in the

VTA might be dampened in depression. VTA orexin

release stimulates dopamine function and reward seeking

(Aston-Jones et al., 2010). But evidence of diminished

cerebrospinal orexin levels, reduced diurnal orexin fluctu-

ations, and deficient VTA dopamine neuron function have

all been seen in depressed patients; who commonly show

anhedonia (American Psychiatric Association, 2000;

Klimek et al., 2002; Salomon et al., 2003; Brundin et al.,

2007). Narcolepsy patients also show a high incidence

of depression and a diminished VTA reward function

(Daniels et al., 2001; Ponz et al., 2010). They show a

massive loss in hypothalamic orexin and dynorphin cell

expression and cerebrospinal orexin levels as well

(Peyron et al., 2000; Crocker et al., 2005).
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Diminished hypothalamic orexin measures, including

cell number, have similarly been observed in preclinical

models of depression that are known to characterize

anhedonia and apathy-like symptomology (Allard et al.,

2004; Feng et al., 2008; Lutter et al., 2008a). The evi-

denced decrease in orexin cell number suggests that

orexin and dynorphin are likely both diminished in the

hypothalamus in depression, and at least orexin dimin-

ished in its VTA, accumbens or mPFC terminal regions.

There is suggestive evidence in depression models that

orexin might be altered in the VTA (Feng et al., 2008).

Also, anhedonic depression models show dopamine

hypofunction (Miczek et al., 2011a) as would be expected

with VTA orexin decreases (Narita et al., 2007; Moorman

and Aston-Jones, 2010). But this could also be expected

with accumbens dynorphin increases (Shippenberg,

2009) which have been evidenced in some preclinical

models but not others (Bjomebekk et al., 2005; Bergstrom

et al., 2008; Rubino et al., 2008; Carr et al., 2010).

These orexin and dynorphin alterations could affect

reward desire (Aston-Jones et al., 2010; Knoll and

Carlezon, 2010). Orexin release in the hypothalamus,

as well as orexin and dynorphin release in the VTA,

stimulates reward seeking in animals (Singh and Desiraju,

1988; Hamilton and Bozarth, 1988; Mitchell and Stewart,

1990; Muschamp et al., 2007; Aston-Jones et al., 2010;

Espana et al., 2010a). Thus, the orexin cell loss described

in depression models could diminish reward desire. But

the reinforcing or euphoric value of rewards might also

be diminished in these models due to their enhanced

accumbens dynorphin levels. Orexin or dynorphin admin-

istration in the accumbens is aversive to animals

(Bals-Kubik et al., 1993; Terashvili et al., 2004; Sharf

et al., 2008), as is dynorphin in the mPFC and dynorphin

and orexin stress mechanisms in the VTA (Bals-Kubik

et al., 1993; Hata et al., 2011).

Thus, changes in the dynamics between orexin and

dynorphin function in depressed patients could cause

their anhedonia symptomology by disrupting these dis-

tinct reward emotional processes. As the above findings

suggest, anhedonic symptoms could be caused by an

increase in accumbens aversion due to locally enhanced

levels of either neuropeptide. But they could also be

caused by a decrease in VTA-stimulated reward seeking

due to locally diminished levels of either peptide in hypo-

thalamic orexin cell projections to the region. But whether

depression models show an imbalance in dynorphin and

orexin expression between the hypothalamus and

dopamine system is unknown.

This study used radioimmunoassay (RIA) to evaluate

this possibility in the social defeat animal model of depres-

sion; at a time that anhedonic sexual disinterest was

expressed. Due to the diminished hypothalamic orexin

cell numbers described in this model and the known

co-expression of dynorphin in these cells (Chou et al.,

2001; Lutter et al., 2008a), we hypothesized that defeated

animals would show orexin and dynorphin decreases in

the hypothalamus. And since the VTA typically receives

a preferentially rich orexin innervation compared to the

mPFC and accumbens reward regions (Fadel and

Deutch, 2002), we predicted that orexin decreases would
also be seen in the VTA. Anhedonia, including sexual dis-

interest, would not be unexpected after such loss (e.g.

Harris et al., 2005; Muschamp et al., 2007; Wang et al.,

2009; Moorman and Aston-Jones, 2010; Espana et al.,

2010b; McGregor et al., 2011; Thompson and Borgland,

2011). But since dynorphin primarily inhibits dopamine

function in the VTA and accumbens, and is co-expressed

in cell bodies within the VTA in addition to afferents to the

region (Nestler and Carlezon, 2006; Shippenberg, 2009;

Knoll and Carlezon, 2010; Panksepp and Watt, 2011),

we predicted that basal dynorphin peptide levels would

be normal or perhaps enhanced in these regions in this

anhedonic depression model.

EXPERIMENTAL PROCEDURES

Fig. 1 provides a concise depiction of the experimental design

used in this study.

Animals and housing

Male Long–Evans rats (N= 39, 8 weeks of age, Harlan, India-

napolis, IN, USA) were socially housed in a light- (12-h cycle,

lights on 7 AM) and temperature-controlled colony room with food

and water available ad libitum. After 3 days of acclimation to the

colony room, they received once daily habituation to handling

(1 min for 7 days) and two habituation sessions to the proximity

test cages employed in this study (10 min each). They were then

singly housed and left undisturbed for 28 days before being used

as intruder animals or controls in the social defeat paradigm de-

scribed below. Isolate housing is known to enhance the develop-

ment and long-term expression of a depression-like phenotype in

this paradigm (Ruis et al., 1999; de Jong et al., 2005). All animal

procedures were carried out in strict accordance with the NIH

Guide for the Care and Use of Laboratory Animals and the VA

Animal Care and Use Committee.

An established cohort of male Long–Evans rats were used as

aggressive resident rats in this study (N= 15; 6–9 months of

age). These animals showed a dominant propensity to fight,

pin, and occasionally bite a well-known submissive animal that

was briefly placed into its homecage. Since Long–Evans males

are naturally aggressive once mature as indicated by the litera-

ture provided by Harlan (Harlan, Indianapolis), and social isola-

tion enhances aggressiveness, each animal within this cohort

had been purchased at 2 months of age and singly housed for

4 months prior to its initial use. They were approximately 3–

6 months older and 175–200 g heavier than the above experi-

mental animals that were exposed to social defeat by this cohort.

Social defeat animal model of depression

The resident–intruder social defeat paradigm was chosen to

model depression since it induces several different types of anhe-

donia-like symptoms including diminished sexual pursuit (see

Nocjar and Panksepp, 2009; Miczek et al., 2011b). Rats that

were used as intruder rats (N= 22) were placed in the home-

cage of an aggressive resident rat during five 30-min social de-

feat sessions. Control animals (N= 17) were given identically

timed sham defeat sessions during which they were exposed to

the empty homecage of one of the male aggressive resident rats.

Each session was 48–72 h apart and videotaped. Under this

social defeat methodology, intruder animals are typically pinned

supine by the resident animal (i.e. defeated) within 5–8 min, but

remain physically exposed to the aggressive resident animal

throughout the 30-min social defeat session (e.g. McLaughlin

et al., 2006; Nocjar and Panksepp, 2009). We have found that



Fig. 1. Experimental design used in this study. Animals were first exposed to chronic social defeat as depicted in the left timeline. Starting 2 days

after defeat terminated, they received several behavioral tests at the noted time points (Experiment 1), or they were sacrificed to determine brain

neuropeptide expression (Experiment 2) as depicted in the right timeline.
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the resident animal will not attack after the sessions initial fighting

bouts if nearly continuous distanced submission is shown by the

intruder in the form of frozen supine, upright or crouched pos-

tures. Thus after being quickly defeated and forced to submit, in-

truder animals are continuously stressed by the threat of physical

aggression if they do not remain submissive across the 30-min

session. Although intruder animals appeared psychologically

stressed at the end of these sessions (e.g., they screeched

and jumped from the resident’s cage when the lid was removed),

physical harm (scratches, bites, etc.) was rarely seen. Animals

were removed from the study if they experienced significant harm

such as scrotal bites, but not after minor harm (slight scratch, ear

nip or toe-nail pull) that healed by the next defeat session and

thus did not interfere with the animal’s performance.

To show that submission developed in intruder animals, the

following behaviors were assessed across defeat sessions: fro-

zen crouch (hunched-back crouching distanced away from the

resident rat or directly at the face of the resident rat), rough-

and-tumbling fights, defensive uprights (animal upright, towards

the resident rat, with 2-paws off of the cage surface), pins (intru-

der animal supine on its back below the resident rat or against the

sidewalls), time to the first pin, and defensive guards (leg kicks or

butt or arm push against the resident rat). These measures are

typical social defeat assessments (Miczek, 1979; McLaughlin

et al., 2006; Walker et al., 2009), except for our measure of fro-

zen crouches directly at the face of the resident rat. In pilot work,

we were surprised that some animals cautiously yet repeatedly

approached the residents face and froze face-to-face. Because

of the vulnerable proximity to the face of the resident animal, this

behavior appears defiant while crouching away from the resident

appears submissive. But the intruder many times remains frozen

in its position if the resident walks away from the intruder at its

face. Since others have shown that immobility oriented towards

the resident was perhaps due to chronic stress-induced dynor-

phin release (McLaughlin et al., 2006), we hypothesized that

these distinct crouch behaviors might differentially predict dynor-

phin and orexin neuropeptide change following defeat. Thus,

both were measured and further assessed below.

Following social defeat termination, defeated and sham de-

feated animals were given several behavioral assessments

(Experiment 1) or were sacrificed to assess brain neuropeptide

levels (Experiment 2).
Experiment 1: Behavioral assessments

Our pilot evidence indicated that anhedonia was evidenced in

socially defeated animals 2 days after defeat terminated (Nocjar

and Panksepp, 2009). But we wanted to validate that our social
defeat methodology was aversive and induced a lasting depres-

sion-like phenotype in animals. Thus, the following behavioral

tests were administered to test this in seven of the above sham

defeat control rats and in 12 that were socially-defeated as

depicted in Fig. 1.

Sexual pursuit reward proximity test. To determine whether

the social defeat methodology diminished reward desire, sexual

interest was assessed 2 and 14 days after the last social defeat

session. Sexual interest was assessed as in our previous reports

(see Nocjar and Panksepp, 2002, 2007). In brief, rats were indi-

vidually placed in a Plexiglas open-field reward proximity cham-

ber that had a wire mesh stimulus cage located in each of its

four corners. Two opposite corner stimulus cages contained a

hormonally primed sexually-receptive female rat (10 lg estradiol

benzoate, 48 h pretest, and 0.5 mg progesterone, 4 h pretest) or

a non-receptive female. The stimulus cage wire mesh screening

prevented copulation, but allowed assessment of a male animal’s

appetitive approach and investigative behavior towards each fe-

male target (e.g., time spent pawing and sniffing at the screen-

ing). The 10-min test was videotaped, and behavior was later

tabulated by an individual that was blind to the animal’s prior

defeat experience. Sexual preference scores were calculated

by subtracting the total time spent at the stimulus cage that con-

tained the non-receptive female from the total time spent at the

cage containing the sexually-receptive female. Since defeat can

induce social avoidance (Krishnan et al., 2007; Lagace et al.,

2010), time spent at both stimulus cages was used as an assess-

ment of female social interest. Time at these cages plus the time

spent at two additional empty stimulus cages in the remaining two

corners of the proximity chamber was used as an assessment of

stimulus cage exploratory interest, since a generalized stimuli

disinterest could affect performance in this task. Vertical locomo-

tion (number of vertical uprights [animal balanced upright on hind

paws]) and horizontal locomotion (number of quadrant entries)

were also counted across the session since locomotor alterations

could also affect performance in this task. Note that chamber

quadrants were clearly marked on the chambers floor.

Resident avoidance proximity test. Interest towards the

aggressive male resident rat was assessed 4 days after the last

social defeat or sham defeat session to see if defeated animals

avoided the aggressive resident animal; indicative of conditioned

fear. In brief, rats were exposed to a nearly identical reward prox-

imity chamber and methodology as used in the sexual pursuit test

above, except that this chamber had only two corner stimulus

cages and the test stimuli differed. For this test, one stimulus

cage was left empty while the other contained the specific

aggressive resident rat that an animal had been physically ex-
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posed to, or sham exposed to, during chronic social defeat ses-

sions. The wire mesh screening allowed assessment of a male

animal’s appetitive approach and investigative behavior towards

the aggressive resident animal (e.g., pawing and sniffing), while

protecting it from any aggressive physical attack by the resident

animal. Resident preference scores were calculated by subtract-

ing the total time spent sniffing and pawing at the empty stimulus

cage from the total time spent at the cage containing the aggres-

sive resident animal. Time spent at both stimulus cages was

used to assess stimulus cage exploratory interest. Locomotor

behavior was also assessed as in the sexual pursuit task (see

above).

Sucrose preference test. To test whether social defeat gener-

ally and persistently diminished reward desire, a 24-h homecage

preference test for 1% sucrose versus plain water was also given

to the above rats at approximately 21 days after their last social

defeat or sham defeat session. Placement of the sucrose and

plain water bottles was counterbalanced between animals.

Sucrose preference scores were calculated by subtracting the

total amount of water consumed from the amount of sucrose con-

sumed. Prior to the test day, rats had been given a 2-h habitua-

tion session where they had free access to both liquids within

their homecages.

Forced swim test (FST). FST immobility was also assessed

in these same animals approximately 28 days after social defeat

terminated. Immobility during this test is thought to model depres-

sion apathy-like symptomology. On the first day, rats were placed

for 10 min in white buckets (51 cm diameter) that contained tepid

water (30 �C, 40 cm deep (McLaughlin et al., 2006)) and their

swimming behavior was videotaped. Twenty-four hours later,

they were given a second swim test for 6 min. Videotapes were

viewed blind, and time spent immobile (floating in the water

and making only those movements necessary to keep the head

above water), swimming (active swimming motions that moved

the animal across the center or in circles within the center of

the bucket), and climbing (forelimb thrashing movements direc-

ted against the sidewalls of the bucket) was tabulated, as well

as immobility latency (time to first expression).

Experiment 2: Brain dynorphin-A, orexin-A and
orexin-B neuropeptide assessment

Since altered orexin and dynorphin function is implicated in anhe-

donic behavioral expression (see introduction), and our prelimin-

ary findings indicated that anhedonic symptomology was

evidenced in socially defeated animals when tested 2 days after

the last social defeat session (Nocjar and Panksepp, 2009), we

assessed orexin and dynorphin tissue levels at this time in this

initial study. As described in Fig. 1, 10 socially defeated and 10

sham defeated animals that had received no other behavioral

assessments were sacrificed 2 days post defeat. Their brains

were removed and basal neuropeptide levels were determined

in extracted tissue samples from the hypothalamus where orexin

and dynorphin co-expressing cells are located, and from areas

within the dopamine reward system where these cells project.

We used a tissue neuropeptide RIA technique to assess this

(see below). RIA is commonly used in published reports of orexin

alterations, whether detecting orexin in cerebrospinal fluid (CSF),

brain microdialysate or brain tissue, though not in blood (Nishino,

2006). Tissue RIA does not provide a measure of neuropeptide

release, but determines the level of available peptide within neu-

ron cell bodies and/or within neuronal vesicles located in axons or

axon terminals in a brain tissue sample. RIA is thought to be a

sensitive measure, even of CSF orexin peptide levels, under

the proper control procedures (Nishino, 2006). In fact, it is com-

monly thought that orexin A can be sensitively, specifically and

reliably detected from all types of samples using either RIA or

enzyme-linked immunosorbent assay (ELISA), but RIA is more
sensitive than ELISA (Lin et al., 2002). And we have repeatedly

detected orexin-B and orexin-A peptide levels, even detected

their altered expression, in both cortical and subcortical brain tis-

sue using RIA (Feng et al., 2007, 2008, 2009).
Tissue dissection. After decapitation, brains were quickly

removed and sliced at 2-mm intervals with the aid of an ice-cold

stainless steel brain matrix (ASI Instruments, Warren, MI, USA).

Brain slices were placed on an ice-cold anodized aluminum block

and the following brain regions were quickly extracted at the fol-

lowing anteroposterior (AP), mediolateral (ML) and dorsoventral

(DV) locations: mPFC (AP 3.7–1.7 mm; ML 0–1.0 mm; DV 0.0

to �5.0], nucleus accumbens [AP 1.7 to �0.3 mm; ML

0–2.5 mm; DV �5.5 to �9.0 mm], hypothalamus [AP �1.3 to

�3.3 mm; ML 0–2.2 mm; DV �7.5 to �9.5 mm] and VTA [AP

�5.3 to �7.3 mm; ML 0–1.0 mm; DV �7.5 to �8.5 mm]. Each

tissue sample was immediately placed in pre-weighed plastic

centrifuge tubes, weighed and then frozen at �80 �C until used

for RIA neuropeptide assessment.

Since it is not known where orexin and dynorphin might inter-

act within subregions of the mPFC, accumbens or VTA reward

regions, the entire anterior to posterior and medial to lateral ex-

panse of these three reward regions were extracted in this initial

study before proceeding to potential subregions of interest within

each. Thus, mPFC tissue samples included the entire anterior

cingulate, prelimbic and infralimbic subregions. Within this sam-

ple were areas that are sensitive to stress, and in particular to

stress-induced orexin-B attentional dysfunction (Lambe et al.,

2005, 2007). Also included were regions of the anterior cingulate

and ventral mPFC that become hypoactive after social defeat

stress, and that when respectively lesioned or stimulated induces

or reverses depression-like symptoms (Covington et al., 2005;

Bissiere et al., 2006; Covington et al., 2010b; Kanarik et al.,

2011). Although subregional specificity was lost with the inclusion

of all three subregions in our sample, it allowed us to first deter-

mine whether neuropeptide change generally occurred in the

mPFC after chronic defeat, before implementing studies of sub-

regional involvement.

Nucleus accumbens samples included its shell and core sub-

regions, as well as the medial olfactory tubercles. Care was taken

to exclude surrounding areas that are involved in orexin-induced

sleep/wake changes such as the medial septum (Berridge et al.,

2010). VTA extraction encompassed its rostral and caudal

regions, and included the small dopamine cell populations that

are stimulated by orexin, and which project to the accumbens

shell and mPFC (Vittoz et al., 2008).

Hypothalamus extraction encompassed the anterior hypo-

thalamus back to the most anterior location of the posterior hypo-

thalamus nucleus. Our sample included the lateral, dorsomedial

and perifornical nuclei of the hypothalamus where orexin neurons

are exclusively located (Nambu, 1999), and at levels where lat-

eral and dorsomedial hypothalamic orexin cells are differentially

activated by stress, food and addicting drug cues (see

Aston-Jones et al., 2010). But it excluded surrounding areas that

are involved in orexin-induced sleep/wake patterns such as the

substantia innominata and medial preoptic area (Berridge et al.,

2010), although the most rostral end of the sample might have

included the most posterior border of the preoptic area.
Peptide extraction. Frozen tissue samples were processed

using a well-established dry-sample protocol used in our lab for

brain tissue peptide extraction (Feng et al., 2007, 2008). In brief,

acetic acid (0.5 M) was added to each centrifuge tube containing

sampled brain tissue, at a volume equal to 10 times the tissue

weight. The centrifuge tubes were then moved to a boiling water

bath for 10 min. After removing the tissue blocks, the microtubes

were centrifuged for 30 s at 5500 rpm. The remaining superna-

tants (containing all peptides from the tissue sample) were
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air-dried under a hood at 60 �C. The final dried peptide sample

extracted from each tissue was subsequently stored at �80 �C
until reconstituted for RIA neuropeptide assessment.
RIA assessment of dynorphin-A, orexin-A and orexin-B
levels. Standard RIA kits for detecting orexin-A (#RK-003–30),

orexin-B (#RK-003–32) and dynorphin-A (#RK-021–03) peptide

expression were used (Phoenix Pharmaceuticals, Burlingame,

CA, USA). Each of these kits provides highly reliable peptide

specificity. The orexin-A kit for example does not cross react with

orexin-B; and vice versa. Similarly, the dynorphin-A kit does not

cross react with dynorphin-B, b endorphin, a-neo-endorphin or

enkephalin and detects dynorphin-A in human, rat, mouse and

porcine samples. We determined the quality of each kit before

experimental assays were conducted by verifying (1) that the

binding activity of 100 ll of the 125I peptide solution was within

a range of 8500–10000 cpm and (2) that the kits sensitivity ratio

was not less than 2.5. The sensitivity ratio was calculated by

dividing the cpm value observed at the lowest detection concen-

tration (1 pg/tube) by the cpm value observed at the highest

detection concentration (128 pg/tube). Thus, R = CPM1pg/

CPM128pg. For example, the mean sensitivity ratio for all orexin-

A and -B RIA kits used in this study was 6.02 ± 0.50 and

2.72 ± 0.34, respectively; indicating that they provided a sensi-

tive measure of tissue orexin levels.

Following these determinations, frozen dried peptide sam-

ples that had been extracted from the brain tissues collected in

this study (see section ‘Peptide extraction’) were reconstituted

in RIA buffer at a 1:50 dilution ratio (mg tissue dried peptide sam-

ple/ll RIA buffer). These sample stock solutions were then fur-

ther diluted and preliminary assays were performed to

determine the appropriate dilution ratio required to detect orex-

in-A, orexin-B and dynorphin-A within each of the brain regions

assessed in this study. We found for example that the optimal

dilution ratio for dynorphin-A was 1:50 in the mPFC, 1:75 in the

nucleus accumbens, and 1:150 in the VTA and hypothalamus.

Applying these ratios allowed us to sensitively detect dynor-

phin-A within tissue samples from all regions, although a more

concentrated sample solution was required to detect it in mPFC

samples for example than hypothalamic or VTA samples.

Once the optimal dilution ratios were determined, levels of all

three neuropeptides were then independently determined within

each brain tissue sample collected following the manufacturer’s

protocol for each neuropeptide (Phoenix Pharmaceuticals, Bur-

lingame, CA, USA). After assay completion, the radioactivity of

each sample tube (containing 100 ll of the optimal diluted

sample) was determined with a gamma counter (Cobra II Auto-

Gamma, Packard Instrument Company, Downers Grove, IL,

USA). The sample value was compared to a standard curve as-

sessed within the assay, which was generated using a standard

protocol formulation. The indicated peptide level was then

converted, based on the optimal dilution ratio used, to pg/mg tis-

sue using GraphPad Prism software (San Diego, CA, USA).

Since 100 ll of the optimal diluted sample was used in all peptide

determinations, sample values were divided by two for example

with a 1:50 optimal dilution ratio (mg tissue dried peptide sam-

ple/ll RIA buffer) since 2 mg of tissue was needed in 100 ll.
Tissue sample assays were carried out in duplicate and the mean

of these two measurements was used as data for statistical

purposes.
Correlational assessment between hypothalamic dynorphin-
A, orexin-A and orexin-B levels and prior social defeat behavioral
expression. Immobility during chronic defeat requires dynorphin

release (McLaughlin et al., 2006). And notably, defeat causes

prolonged activation of orexin cells which typically co-express

dynorphin (Chou et al., 2001; see Berridge et al., 2010). Their

overstimulation also persistently and detrimentally alters their

intracellular expression of orexin and dynorphin (Katsuki et al.,

2010). Thus, we wanted to determine whether an animal’s social
defeat behavioral expression predicted hypothalamic orexin and

dynorphin alteration. To assess this, frozen crouches, fights,

uprights and guards that were expressed during the final social

defeat session were each correlated with the above hypothalamic

orexin-A, orexin-B and dynorphin-A measures.

Statistics

Data are presented as mean ± SEM. Significance was set at

p< 0.05. To determine whether submission developed in ani-

mals across social defeat sessions, a dependent sample t-test
was employed to assess whether submissive and aggressive

behavioral expression changed between the first and last social

defeat sessions. Then to determine the effects of social defeat

on behavior (Experiment 1) and on brain neuropeptide expres-

sion (Experiment 2), independent sample t-tests and two-way

repeated ANOVAs were used.

Independent sample t-tests were employed in Experiment 1

to determine whether defeated versus sham defeated animals

differed in the resident avoidance test (resident preference

scores, locomotor scores and stimulus cage exploration), su-

crose preference test, or last FST (immobility, swimming and

climbing duration). They were also used in Experiment 2 to deter-

mine whether these groups differed in neuropeptide expression.

Repeated measures ANOVAs were used when multiple tests

of a behavior were being compared between these groups. Thus,

a two-way repeated measures ANOVA (day � group) was used

to determine whether defeated versus sham defeated animals

differed during the first and second sexual pursuit tests (sexual

pursuit scores, female social interest, motor exploration, and

stimulus cage exploration), or differed across the two FSTs (%

of session immobile, swimming and climbing) or four body weight

tests (weight gain post defeat). If a significant interaction between

test day and group was found, post-hoc analysis of main effects

was further explored using post-hoc pairwise comparisons

adjusted for multiple comparisons (p< [0.05 divided by the num-

ber of comparisons]).

And finally, to determine whether an animal’s social defeat

behavioral expression predicted hypothalamic orexin and dynor-

phin peptide changes, Pearson’s product correlations (r) were

conducted between social defeat behaviors (crouching behav-

iors, fights, uprights and guards) and subsequent hypothalamic

neuropeptide expression (orexin-A, orexin-B and dynorphin-A).

The proportion of the variance in neuropeptide level attributable

to each behavior (r2) was also calculated.

RESULTS

Chronic social defeat behavior

As seen in the left graph in Fig. 2a, intruder animals spent

more time in a frozen submissive crouch posture while in

the presence of the aggressive resident animal by the final

defeat session (t[21] = 4.79, p< 0.001; see Total Frozen

Crouch). Two types of frozen crouch behavior were

assessed in animals as depicted in the right half of this

graph (for their behavioral description, see section ‘Social

defeat animal model of depression’). Frozen crouch pos-

tures distanced away from the resident animal increased

across defeat sessions (t[21] = 3.79, p< 0.01), while

crouch behaviors at the face of the resident animal in-

creased minimally across defeat (p= 0.20). The right

graph in Fig. 2a shows that animals also engaged in fewer

fights (t[21] = 3.48, p< 0.003), defensive uprights

(t[21] = 2.52, p< 0.03) and guards (t[21] = 3.34,

p< 0.004) by the last defeat session. Thus, behavioral

submission in the presence of the aggressive resident

animal increased across social defeat sessions.



Fig. 2. Immediate and lasting behavioral response of socially defeated intruder rats to the aggressive resident animal. The resident/intruder social

defeat paradigm was used to induce a depression-like phenotype in animals. Thus on five separate occasions, male rats (N= 22) were exposed to

prolonged 30-min inescapable social defeat by an aggressive resident animal, each 2–3 days apart. (a) Submissive frozen crouch postures

evidenced during the first and last social defeat sessions are illustrated (left graph), as well as the number of aggressive fights, defensive upright

postures, and butt and paw guards (right graph). Note that sham control rats (N= 17) were given identically timed sham defeat sessions during

which they were exposed to the resident rat’s empty homecage. (b) Interest towards the aggressive male resident animal (4 days after defeat) by

defeated rats (N= 12) and normal sham controls (N= 7) in experiment 1 (left graph). Time spent exploring all stimulus cages during the test as

well as locomotor counts (# vertical uprights and horizontal quadrant entries) are shown in the right graph. All data are mean ± SEM. ⁄p< 0.05

compared to defeat session 1 (a) or to normal sham controls (b). tCrouch behavior that was distanced away from the resident rat negatively

correlated to an animals’ hypothalamic orexin and dynorphin levels measured 2 days later (see Fig 6b).
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Note that frozen crouch distanced away from the res-

ident animal was related to hypothalamic neuropeptide

decreases seen 2 days after defeat terminated (see sec-

tion ‘Relationship between social defeat behavioral

expression and hypothalamic levels’ below and Fig. 6b).

Experiment 1: Behavioral study test performance
Sexual pursuit tests conducted 2 and 14 days after
defeat. As seen in the left graph in Fig. 3a, sexual pursuit

was diminished in defeated animals 2 days and 14 days

after the last social defeat exposure compared to normal

controls (overall group effect: F[1,17] = 9.101,

p< 0.009; and no interaction with test day:

F[1,17] = 0.57, p= 0.46). But as seen in the right graphs

in Fig. 3a, defeated animals spent a similar amount of

time investigating the two stimulus cages that contained

the female animals as did normal controls (no overall

group difference in social interest). And post-hoc analysis

of a significant group � test-day interaction

(F[1,17] = 4.95, p< 0.05) indicated that they did not dif-

fer from normal controls in social interest either 2-days
(t[17] = 0.94, p> 0.025) or 14-days post defeat

(t[17] = 2.01, p> 0.025). Also, their exploration of the

stimulus cages during the test was similar to controls

(no overall group effect F[1,17] = 3.99, p> 0.05; and

no group � day interaction) as was their vertical and hor-

izontal locomotion (no overall group effects:

F[1,17] = 2.14, p> 0.05 and F[1,17] = 0.04, p> 0.05,

respectively; and no group � day interaction in either

test), as seen in the right graphs in Fig. 3a. These findings

indicate that the diminished interest shown by defeated

rats towards the sexually receptive female animal was

not due to a decreased interest in the stimulus cage, a

locomotor decrement or a decreased social interest

towards females during this test. Thus, social defeat

induced lasting sexual anhedonia in animals.
Resident avoidance proximity test conducted 4 days

after defeat. Fig. 2b shows the interest expressed by de-

feated and normal sham defeated controls towards the

aggressive resident animal when assessed 4 days after

defeat (left graph). Opposite to controls, defeated animals

avoided the stimulus cage that contained the aggressive



Fig. 3. Reward pursuit shown by socially defeated and normal sham defeated controls in Experiment 1. Three appetitive tests were given to animals

to validate that the social defeat procedure induced lasting anhedonia-like behavior. (a) The left graph shows the sexual pursuit scores of the

animals (see section ‘Sexual pursuit reward proximity test’) when tested 2 days and 14 days after the final social defeat session. These scores

depict the male animal’s preference to vigorously explore a screened stimulus cage that contained a sexually receptive female, over another that

contained a non-receptive female, within a reward-proximity test box. The right graphs show that their sexual preference was not due to any change

in social interest towards females, nor due to locomotor decreases. (b) The left graph depicts the 24-h preference shown by these same animals for

a 1% sucrose solution over plain water, which was assessed in the animal’s homecage 21 days after the final defeat session. The right graph shows

their cumulative weight gain after chronic defeat sessions terminated (difference from pre-defeat weight). All data are mean ± SEM. ⁄p< 0.05,

compared to normal sham controls. ⁄⁄p< 0.05, overall ANOVA group effect which did not interact with test day.
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resident rat that they had been exposed to during chronic

defeat (t[17] = 2.93, p< 0.01). As indicated in the right

graph in Fig. 2b, defeated animals did not spend signifi-

cantly less time exploring the chambers two stimulus

cages during the test (t[17] = 1.72, p= 0.10). But their

vertical and horizontal locomotor counts were diminished

during the test (t’s [17] = 2.51 and 2.34 respectively, and

p’s < 0.03) in stark contrast to their normal locomotion

shown during the sexual pursuit tests (see Fig. 3a). These

findings of diminished approach towards the aggressive

resident animal, of decreased open-field locomotor

expression, but normal exploratory interest in the stimulus

cages during the test, suggest that conditioned fear devel-

oped in defeated animals.
Sucrose preference test conducted 21 days after
defeat. Fig. 3b shows that the 24-h sucrose preference

scores of defeated animals were diminished compared to

controlswhen tested 21 days after social defeat terminated

(t[11] = 3.08, p< 0.02). Note that three of the initial ani-
mals in this study were sacrificed before this test was con-

ducted, and the data from three additional animals were

lost due to technical difficulties with the task. Nonetheless,

this finding indicates that the anhedonia expressed by de-

feated animals when tested 2 days after social defeat

(see sexual anhedonia expression in Fig. 3a) was still evi-

dent in this depression model nearly 3 weeks later.

As seen in the right graph in Fig. 3b, normal sham

defeated controls and socially defeated animals gained

weight after social defeat sessions terminated (overall

day effect F[3,42] = 57.99, p< 0.001). But, defeated ani-

mals showed a non-significant trend towards faster weight

gain than normal sham controls (group � weight interac-

tion: F[3,42] = 2.65, p= 0.06).
FST conducted 28 days after defeat. Fig. 4 shows the

immobility, swimming, and climbing behavior shown by de-

feated rats and normal sham defeated controls during two

forced swimming tests that were conducted 24 h apart

(FST1 and FST2) approximately 28 days after defeat



Fig. 4. FST behaviors shown by socially defeated and normal sham defeated controls in Experiment 1. Animals were tested 1 month after defeat

terminated. Two FSTs were given 24 h apart (FST1 and FST2). (a) The left graph depicts how quickly animals became immobile. The right graph

shows the percentage of time animals were immobile, swimming or climbing during these tests. (b) The graph shows immobility, swimming and

climbing duration during the final FST (FST2) by defeated rats and normal controls. All data are mean ± SEM. ⁄p< 0.05, compared to normal

sham-defeat controls. ⁄⁄p< 0.05, overall ANOVA group effect which did not interact with test day.
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terminated. As indicated in Fig. 4a (left graph), both de-

feated animals and normal controls showed a shorter la-

tency to become immobile in FST2 than FST1 (overall

test effect: F[1,13] = 16.57, p< .01; and no test � group

interaction). But defeated rats showed shorter immobility

latencies overall (overall group effect: F[1,13] = 8.30,

p< .02; and no test � group interaction: F[1,13] = 0.43,

p= .52).

As seen in the right graph in Fig. 4a, the percentage of

time that defeated rats and normal controls spent immo-

bile during these tests increased from FST1 to FST2

(overall test day effect: F[1,13] = 8.49, p< .02; and no

test day � group interaction). But defeated animals

showed a higher percentage of time immobile overall in

both FST measures (overall group effect:

F[1,13] = 15.06, p< 0.003; and no group � test interac-

tion effect F[1,13] = 0.01, p= 0.90). And although the

percentage of time spent swimming was not significantly

different between defeated rats and normal controls (no

overall group effect: F[1,13] = 1.90. p= 0.19; although

the group � test interaction was marginal:

F[1,13] = 3.84, p= 0.07 and an overall test effect was

seen: F[1,13] = 4.81, p< 0.05), their percentage of time

spent climbing during these tests did differ overall (overall

group effect: F[1,13] = 6.21, p< 0.03; and no group -

� test interaction or main test effect). Thus as typically

seen in this paradigm, immobility was shown sooner

and at a higher level in FST2. But defeated rats showed

more immobility and a faster latency to become immobile.

They also showed less climbing during these tests overall.
The actual duration of the above behaviors during

FST2 is plotted in Fig. 4b. Immobility duration during

FST2 differed between defeated and normal controls

(t[13] = 2.47, p< 0.03). Also, non-significant trends of

a diminished swimming duration (t[13] = 2.08,

p= 0.05) and climbing duration (t[13] = 1.74, p= 0.10)

was seen. Thus, socially defeated rats showed higher

immobility in the final FST, and a trend towards lower

swimming and climbing.

Note that the data were lost from one defeated animal

due to a video-recording technical error during the test.

And of course, data were not available from the same

three defeated animals that were sacrificed prior to the

sucrose test (see above).
Experiment 2: Neuropeptide study RIA
determinations

The typical tissue extraction areas used in this study are

depicted by the hatched regions in Fig. 5 (anterior extent

of samples (Paxinos and Watson, 1998)). Samples were

collected 2 days after the last sham or social defeat ses-

sion since defeated animals typically show anhedonic

sexual disinterest at this time (see Fig. 2; Nocjar and

Panksepp, 2009).

RIA determinations of dynorphin-A, orexin-A and orex-
in-B within the mPFC, nucleus accumbens, VTA and

hypothalamus. As seen in Fig. 6a, basal levels of orexin-A

and orexin-B were diminished in the mPFC of socially de-



Fig. 5. The typical mPFC, nucleus accumbens, VTA and hypothalamus tissue extraction areas used in this study (see hatched areas). Each slice

indicates the most rostral level of the sampled area, which was 2 mm in depth back through the brain. Orexin-A, orexin-B and dynorphin-A RIA

neuropeptide assessments were conducted in each.
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feated animals compared to sham defeated controls (t’s
[13–14] = 2.24 and 3.29 respectively, p’s < 0.05); but

dynorphin levels were not altered (t[16] = 0.65,

p= 0.95). In the nucleus accumbens, persistent basal

neuropeptide alterations were not evidenced (t’s [13–

15] = 0.19, 0.15 and 0.33, p’s = 0.85, 0.88 and 0.71

respectively). In the VTA, basal levels of orexin-B were sig-

nificantly diminished (t[16] = 2.60, p< 0.02) and a similar

non-significant trend was apparent for orexin-A

(t[17] = 1.79, p= 0.09), while dynorphin-A alterations

were not evidenced (t[18] = 0.63, p= 0.54). However,

dynorphin-A, orexin-A and orexin-B levels were all dimin-

ished in the hypothalamus of defeated animals (t’s [13–

14] = 2.58, 2.19 and 3.53 respectively, p’s < 0.05). Thus,

orexin-A and orexin-B were diminished in mesocortical

regions of the dopamine reward system, and both orexin

peptides as well as dynorphin-A were diminished in the

hypothalamus in the social defeat model of depression.

Relationship between social defeat behavioral expres-
sion and hypothalamic levels of dynorphin-A, orexin-A

and orexin-B neuropeptides. As seen in Fig. 6b, hypotha-

lamic orexin-B levels shown two days after defeat

terminated were negatively and significantly correlated

with the animals distanced crouch behavior during defeat

exposure (frozen crouch away from the resident animal,

r= �0.82, p= 0.04). Although not shown for orexin-A

(r= �0.50, p= 0.24, r2 = 0.25), a similar non-significant

trend was shown between dynorphin-A and this crouch

behavior (r= �0.68, p= 0.09, r2 = 0.46).
The relationship between hypothalamic neuropeptide

expression and other social defeat behaviors was not sig-

nificant: correlation coefficients between dynorphin-A,

orexin-A or orexin-B and crouch at the residents face

(r= �0.10, 0.40, and �0.11; respectively), fights

(r= �0.07, 0.24, and �0.03; respectively), and uprights

(r= �0.26, �0.17, and �0.30; respectively). And the pro-

portion of the variance in neuropeptide level attributable to

each of these behaviors (r2) was 24% at best. Note that

correlations with guard behaviors were not conducted be-

cause only one animal expressed this behavior during the

final defeat session.

These findings indicate that a prolonged distanced

crouch responsepredisposes orexin loss in this depression

model. The similar trend between this behavior and dynor-

phin loss supports further exploration of this relationship

since our hypothalamus tissue sample not only included

orexin and dynorphin co-expressing cells in the dorsal

hypothalamus, but also included other ventral hypothala-

mus dynorphin cell populations (Chou et al., 2001).

DISCUSSION

We found anhedonic sexual disinterest in the rat social

defeat model of depression when assessed 2-days after

termination of defeat. Importantly, orexin peptide levels

were diminished in the dopamine reward system at this

time and both orexin and dynorphin levels were de-

creased in the hypothalamus. The model also showed a

lasting generalized depressive phenotype. Sexual pursuit



Fig. 6. Neuropeptide levels within the hypothalamus and dopamine reward system in socially defeated and normal sham defeated controls in

Experiment 2. Two days after defeat terminated, socially defeated rats and normal sham controls (N= 10 each group) were sacrificed. Tissue

samples from the mPFC, nucleus accumbens (Naccu), VTA and hypothalamus (Hypo) were collected using the extraction parameters described in

Fig 5. Due to the exclusion of samples that extended an areas border, RIA analysis of the mPFC and Naccu included tissue from 7–9 animals from

each group, VTA analysis included 9–10 from each and hypothalamus analysis included 6–9 from each. (a) RIA determinations of dynorphin-A,

orexin-A and orexin-B peptide expression within these regions are shown. All data are mean (±SEM) pg peptide level per mg tissue sample

collected from the area. ⁄p< 0.05 and tp= 0.09, compared to normal sham controls. (b) Correlational data depicting the percentage of time spent

in a distanced frozen crouch position during the final social defeat session and their basal hypothalamic dynorphin-A, orexin-A and orexin-B peptide

levels expressed 2 days later. The Pearson Product Correlation Coefficient (r) and its significance (p) are also shown.
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and sucrose intake remained diminished for at least

3 weeks, and apathy-like behavior in the FST was still evi-

dent one month after defeat terminated. This is the first re-

port of diminished sexual interest or motivation in a

depression model other than our preliminary findings

(Nocjar and Panksepp, 2009), although enhanced FST

apathy and diminished sucrose intake and copulation

have all been previously seen (e.g. see Sugiura et al.,

1997; Rygula et al., 2005; Lutter et al., 2008b; Haenisch

et al., 2009; Ito et al., 2009; Miczek et al., 2011b). Our

findings also provide the first direct evidence of a potential

orexin dysfunction in mesocortical regions of the dopa-

mine system in depression.
Orexin and dynorphin levels were diminished in the
hypothalamus

Although stress can acutely enhance hypothalamic

orexin cell activation (Winsky-Sommerer et al., 2004;
Harris and Aston-Jones, 2006; Furlong et al., 2009;

Berridge et al., 2010; Johnson et al., 2010; Nollet

et al., 2011), a growing literature with depression animal

models suggests that orexin cell function is likely dimin-

ished in depression. In the social defeat model used in

the current work, decreased hypothalamic pre-proorexin

mRNA and orexin cell count and activation have all

been reported (Lutter et al., 2008a). And we show that

orexin-A and orexin-B peptide levels are diminished.

Hypothalamic decreases in orexin peptide and orexin

cell size have also been seen in the neonatal clomipra-

mine and Wistar–Kyoto depression models (Allard

et al., 2004; Feng et al., 2008). Hypothalamic orexin1
receptor expression is also diminished (Allard et al.,

2004). And we provide the first evidence in preclinical

depression models that both orexin and dynorphin pep-

tides are decreased in the hypothalamus, which is note-

worthy since dynorphin is co-expressed in nearly all

hypothalamic orexin cells (Chou et al., 2001).
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Further work is needed however to determine the loca-

tion of the dynorphin loss since our hypothalamic tissue

sample included orexin cells as well as other ventral hypo-

thalamic cell populations that contain dynorphin (see Chou

et al., 2001; Harthoom et al., 2005). But several pieces of

evidence suggest that dynorphin was likely lost from orexin

cells. First, our defeated animals showed higher weight in-

creases than controls after defeat sessions terminated; an

effect seen with orexin cell ablation and loss of both pep-

tides (orexin/ataxin-3 transgenic mice (Nishino et al.,

2000; Hara et al., 2001; Mieda et al., 2004; Crocker et al.,

2005)) but not when orexin is lost but dynorphin remains

in these cells (i.e., orexin deficient mice (Willie et al.,

2001)). Second, orexin cell decreases have been previ-

ously reported in socially defeated animals (Lutter et al.,

2008a). Third, prolonged activation of orexin neurons, as

would occur under prolonged defeat stress (see Berridge

et al., 2010), diminishes both orexin and dynorphin in hypo-

thalamic orexin cells (Katsuki et al., 2010). And finally, we

found that sexual pursuit and hypothalamic orexin and

dynorphin peptide levels were all diminished 2 days after

defeat terminated. In a similar temporally related fashion,

castration decreases copulation and orexin cell survival

which would ablate both orexin and dynorphin (Chou

et al., 2001; Muschamp et al., 2007).

The hypothalamic orexin and dynorphin decreases

seen in our social defeat depression model suggest that

hypothalamic function may be vastly dysregulated in

depression. Decreased hypothalamic orexin function

diminishes reward seeking (Aston-Jones et al., 2010),

and our depression model expressed anhedonia. But lo-

cally decreased levels of orexin and dynorphin could also

dampen the activity of hypothalamic neuropeptide Y cells

and cells that contain melanin concentrating hormone (Li

and van den Pol, 2006); disturbing feeding (Dryden et al.,

1996; Tritos et al., 2001; Chen et al., 2002; Chaffer and

Morris, 2002; Bayer et al., 2002; Li and van den Pol,

2006). The diminished dynorphin levels could also disin-

hibit the remaining functional orexin cells (Li and van

den Pol, 2006), dysregulating sleep and arousal, metabo-

lism and energy balance (Horvath et al., 1999; Hagan

et al., 1999; Bourgin et al., 2000; Seeley and Woods,

2003). Notably, disturbances in all have been seen in

depression.

Interestingly, chronic social defeat induces immobility

in animals by enhancing dynorphin release (McLaughlin

et al., 2006). Although it is not known whether hypotha-

lamic orexin and dynorphin co-expressing cells are

involved in this dynorphin effect, chronic defeat causes

prolonged activation of these cells which detrimentally

affects their intracellular dynorphin and orexin expression

(Berridge et al., 2010; Katsuki et al., 2010). Thus, we

hypothesized that social defeat behavior might predict

hypothalamic orexin and dynorphin loss in this study.

Behaviors that were rarely shown during chronic defeat

(fighting, uprights, guards and crouches at the residents

face) did not predict neuropeptide loss likely due to low

variability caused by their rare expression. But an ani-

mal’s propensity to submissively crouch distanced from

the resident animal predicted orexin loss in this depres-

sion model. A significant relationship with dynorphin loss
was not seen (�0.68, p= 0.09), but this was perhaps

due to the inclusion of other ventral hypothalamus dynor-

phin cell populations in our sample. Further assessment

of this relationship should be conducted.
Orexin levels in mesocortical regions of the
dopamine system were diminished

Social distress predisposes depression in humans and

animals alike (Bjorkqvist, 2001; Huhman, 2006; see

Miczek et al., 2011a) and appears to have a strong detri-

mental effect on dopaminergic brain regions. Several of

the disturbances reported implicate orexin dysfunction.

For example, dampened mPFC function has been

seen in anhedonic socially defeated animals and in

depressed patients (e.g. see Covington et al., 2005;

Mayberg et al., 2005; Bissiere et al., 2006; Konarski

et al., 2007; Covington et al., 2010b; Kanarik et al.,

2011). Cognitive and memory deficits (von Frijtag et al.,

2000; Narayanan et al., 2011; Yu et al., 2011), as well

as altered mPFC gliogenesis (Czeh et al., 2007), dimin-

ished brain-derived neurotrophic factor (BDNF) expres-

sion (Miczek et al., 2008), chromatin remodeling

(Hinwood et al., 2011), and diminished pyramidal excita-

tion and synaptic neuroplasticity have also been reported

(Covington et al., 2005; Leussis and Andersen, 2008). We

show that this model has diminished mPFC levels of orex-

in-A and orexin-B. Locally decreased orexin-B function

could cause the cognitive, pyramidal and neuroplastic

deficits and dampened mPFC function described in this

model (see Huang et al., 2006; Borgland et al., 2006;

Wise, 2006; Lambe et al., 2007). By triggering glutamate

release, orexin-B enhances excitability of pyramidal cells

in the mPFC (Lambe and Aghajanian, 2003; Lambe et al.,

2005; Lambe et al., 2007). And notably, pyramidal cell

stimulation in the ventral mPFC diminishes depressive

symptoms in animals, while their inhibition in the rostral

anterior cingulate induces these symptoms (Bissiere

et al., 2006; Covington et al., 2010b).

And our demonstrated mPFC orexin-A decreases

could at least partially cause anhedonia in this depression

model. Orexin-A has been implicated locally in reward

pursuit (Davis et al., 2009) and it stimulates deep neuro-

nal layers of the mPFC that are implicated in reward seek-

ing (McFarland and Kalivas, 2001; Bayer et al., 2004; Xia

et al., 2005). Note that we hypothesized that anhedonia

could also be caused by enhanced mPFC levels of dynor-

phin, since it locally induces dysphoria in animals (Bals-

Kubik et al., 1993). But normal levels of the peptide were

expressed in the area as seen also in the prefrontal cortex

of depressed patients (Peckys and Hurd, 2001).

VTA hypofunction has also been seen in anhedonic

socially defeated animals (Miczek et al., 2011a) similar

to other stress-induced depression models and de-

pressed patients (Di Chiara and Tanda, 1997; Klimek

et al., 2002). Diminished BDNF expression is also seen

in the area (Miczek et al., 2008). Note that prolonged

uncontrollable or continuous social distress appears nec-

essary to induce both anhedonia and dampened BDNF

and VTA function in the social defeat depression model;

milder exposures to weeks of brief rescued social distress
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actually enhances reward seeking and VTA function (Mic-

zek et al., 2008, 2011a). Our findings provide a potential

mechanism for the VTA hypofunction evidenced in this

model and for the anhedonia it would induce.

For example, the hypothalamus sends a prominent

orexin projection to the VTA which when stimulated pro-

motes effort and reward motivation, including sexual inter-

est (Muschamp et al., 2007; Aston-Jones et al., 2010;

example reviews Espana et al., 2010a; Thompson and

Borgland, 2011). Orexin directly activates dopamine cells

in this region, although perhaps mainly by an extrasynap-

tic mechanism (Narita et al., 2006; Balcita-Pedicino and

Sesack, 2007; Vittoz et al., 2008). Orexin also magnifies

glutamatergic drive to the area (Borgland et al., 2008;

Moorman and Aston-Jones, 2010). Particularly important

is orexin’s diurnal amplification of mPFC glutamatergic

stimulation of the VTA; an effect thought to diurnally pro-

mote motivational arousal (Moorman and Aston-Jones,

2010). Although dynorphin levels appeared minimally af-

fected, our sexually-anhedonic defeated animals showed

diminished VTA orexin expression which the above evi-

dence indicates could cause VTA hypofunction and anhe-

donia symptomology.

In fact, several pieces of evidence implicate VTA orex-

in hypofunction in the sexual disinterest evidenced in

depression. For example, orexin activates mesolimbic

dopamine cells that are typically stimulated by exposure

to an estrous female (Pfaus et al., 1990; Narita et al.,

2006). Activation of these cells also purportedly triggers

sexual pursuit (Mas et al., 1990; Louilot et al., 1991;

Damsma et al., 1992; Hull and Dominguez, 2007); and

orexin simultaneously activates these cells and stimulates

sexual pursuit (Muschamp et al., 2007). Thus, VTA orexin

loss could induce sexual anhedonia in depression by

causing dopamine hypofunction. In support of this, we

found decreased VTA orexin levels in a sexually-anhe-

donic depression model that expresses VTA dopamine

hypofunction (Miczek et al., 2011a) and a copulatory dis-

interest that is reinstated by dopamine treatment (Sugiura

et al., 1997).

A final hypothesis that was proposed in this study was

that orexin and dynorphin enhancements might be seen in

the accumbens in anhedonic socially defeated animals.

Dynorphin locally inhibits accumbens dopamine release

(see Nestler and Carlezon, 2006; Knoll and Carlezon,

2010; Alcaro and Panksepp, 2011). And notably dopa-

mine hypofunction is seen in the area in this depression

model (Miczek et al., 2011a). Furthermore, both orexin

and dynorphin appear to induce dysphoria in the accum-

bens (Bals-Kubik et al., 1993; Terashvili et al., 2004;

Sharf et al., 2008). Although evidence suggests that

anhedonia could be due to changes in kappa receptor

sensitivity or post-synaptic influences of dynorphin within

the accumbens (Bruchas et al., 2007; Mu et al., 2011), we

show that it is likely not due to changes in basal levels of

dynorphin or orexin in the area.

Basal accumbens orexin changes have not been

assessed in depression models prior to this study. But

several labs have assessed dynorphin alterations. Unless

animals were female, most concur with our finding of

unaltered basal dynorphin in the area. This was shown
regardless of whether the depressive-like phenotype

was a natural genetic trait or induced by adolescent drug

exposure or by chronic mild stress in adulthood

(Bjomebekk et al., 2005; Bergstrom et al., 2008; Rubino

et al., 2008). The dynorphin measure also did not matter.

Prodynorphin mRNA was normal within soma throughout

the accumbens in two of these depression models

(Bjomebekk et al., 2005; Bergstrom et al., 2008). Also,

RIA determination of accumbens tissue neuropeptide

levels, which was used in the current study, showed nor-

mal dynorphin A in male anhedonic animals as we found

(Rubino et al., 2008). Thus, dynorphin synthesis within

accumbens cell soma as well as dynorphin-A peptide

within local cells and afferents to the region appear nor-

mal in depression models.

But ELISA neuropeptide assessment detected

accumbens dynorphin-A enhancements in the Wistar–

Kyoto depression model (Carr et al., 2010), and similar

to RIA, ELISA detects neuropeptide levels throughout

the cell. Perhaps accumbens dynorphin enhancement is

specific to the Wistar–Kyoto model, which differs from

most depression models in its resistance to antidepres-

sant treatment (Lopez-Rubalcava and Lucki, 2000;

Tejani-Butt et al., 2003; Will et al., 2003a).
Conclusion and relevance to depression

This study demonstrates that an imbalance in orexin and

dynorphin affective interactions between the hypothala-

mus and dopamine system may exist in depression. Our

described mPFC and VTA orexin loss in the social defeat

depression model indicates that orexin cell populations to

mesocortical regions of the dopamine system may be par-

ticularly sensitive to social distress. Also, since such orex-

in loss could dampen both stimulus-induced and diurnal

motivational arousal (Moorman and Aston-Jones, 2010),

it implicates mesocortical orexin dysfunction in the anhe-

donia and apathy expressed by this preclinical model and

in depressed patients. The orexin and dynorphin loss we

describe in the hypothalamus could also cause extensive

emotional dysregulation.

Unfortunately, little is known about orexin and dynor-

phin affective interactions. Further work that deciphers

the behavioral effect of these imbalances may clarify their

interactive role in brain emotional processing related to

depression. Subregional assessment of the areas ad-

dressed in this study is also needed to better localize

these roles. However, we do know that orexin functional

decreases can cause emotional instability (Scott et al.,

2011) as clearly seen in our orexin-deficient socially de-

feated animals. Orexin functional increases also amelio-

rate depressive-like symptomology in preclinical

depression models and depressed patients (DeMet

et al., 1999; Lutter et al., 2008a; Ito et al., 2009). Although

it will be challenging to determine how our reported orexin

and dynorphin decreases parallel or compound other

effects seen in this depression model including numerous

gene and neuropeptide synthesis alterations (Panksepp

and Watt, 2011; Miczek et al., 2011b), more effective

depression treatment will not be developed without further

understanding of such multifactorial interactions.
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